Final Report

1. Abstract

In order to define Blue Carbon more accurately, we investigated a new concept, namely, Urban Blue Carbon, which is composed of complex components produced by cities and urban areas. For this research, we conducted a field study to measure the CO₂ absorption and fixation volume of Urban Blue Carbon. The field study is conducted in Kanazawa Bay, Yokohama's coastal area. We studied the CO₂ concentration in seawater and the influential factors, and investigate their relationships.

An overview of the research, its schedule, and location are provided below.

	Overview								
Objective	To study the relationship between the CO ₂ concentratio								
	and fixation and the influential factors (inflow of drainage								
	from the city, etc.) in Kanazawa Bay								
Location	Kanazawa Bay (Yokohama's coastal area)								
Research	1. Study of CO ₂ concentration and water quality in								
items	Kanazawa Bay								
	Organic carbon, chlorophyll concentration, nutritive								
	salt concentration, water temperature, salinity,								
	turbidity, dissolved oxygen concentration, dissolved								
	organic material volume, quantity of light, etc.								
	2. Study of biomass of seaweeds								
	3. Study of carbon stocks in sediments								

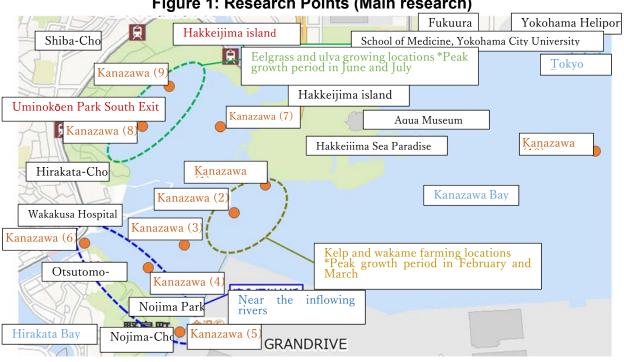

Table 1: Research Overview

Table 2: Research Schedule

	Research Period	Research Contents
Preliminary	December 2016	Study of CO_2 concentration and water quality in seaweed cultivation locations
Research A	February 2017	and the open sea
Preliminary	October 2017 -	(1) Study of CO ₂ concentration and water quality in Kanazawa Bay
Research B	March 2018	(2) Study of biomass of seaweeds
		• Kelp
Main	June 2018 -	(1) Study of CO ₂ concentration and water quality in Kanazawa Bay
Research	October 2018	
	October 2018	
	- March 2019	

June 2018	(2) Study of biomass of seaweeds
	• Eelgrass
	• Ulva
October 2018 -	• Kelp
March 2019	• Wakame
January 2019 -	(3) Study of carbon stocks in sediments
March 2019	

*: Combined with the main research results then organized (): Scheduled report contents

Figure 1: Research Points (Main research)

Point Name	Positioning					
Kapazawa (1)	Kelp cultivation inland location point. This current research period was outside the					
Kanazawa (1)	cultivation season.					
K_{0}	Wakame cultivation inland location point. This current research period was					
Kanazawa (2)	outside the cultivation season.					
Kanazawa (3)	An intermediate point between Kanazawa (2) and Kanazawa (4).					
	Nojima Park point. A location where eelgrass is grown (Slightly sparse in					
Kanazawa (4)	comparison to Kanazawa (8) and Kanazawa (9)).					
	Point within Nojima Waterway in the mouth of Hirakata Bay. There is inflow from					
Kanazawa (5)	the rivers flowing into Hirakata Bay, and discharged water from the factories in					
	Natsujima within Nojima Waterway.					
Kanazawa (6)	Point in the Nojima channel in the mouth of Hirakata Bay. There is inflow from the					
Kanazawa (6)	rivers flowing into Hirakata Bay.					

Kanazawa (7)	Point offshore from Kanazawa (8) and Kanazawa (9).
Kanazawa (9)	Point within the location where eelgrass and ulva are growing at the Uminokōen
Kanazawa (8)	Park.
	Point within the location where eelgrass and ulva are growing at the Uminokōen
Kanazawa (9)	Park.
	Input point from the open sea. The farthest point from the location where eelgrass
Kapazawa (10)	and ulva are growing and the location where kelp is cultivated, and where the
Kanazawa (10)	affect from inflowing rivers is less likely, and the affect from the open sea is more
	likely.

2. Main Research Overview

An overview of the research conducted from June to October 2018 onward is given below.

1 Research on CO₂ Concentration and Water Quality in Kanazawa Bay

(1) Overview

Research Frequency:

Approximately once every 2 weeks. (Conducted once in the morning and once in the afternoon. A water sample is taken from the surface layer and from the bottom layer.)

Work Procedure:

- (1) Move to a specific point in the research zone as indicated in Figure 2 via boat and obtain water samples from the surface and the bottom layers.
- (2) At the specific point (1), by using a rope, lower the measurement devices from the surface layer to the bottom layer and obtain sample data.
- (3) The obtained samples are either filtered or stabilized and stored in a cold dark place.

The above steps (1) to (3) are conducted once in the morning and once in the afternoon.

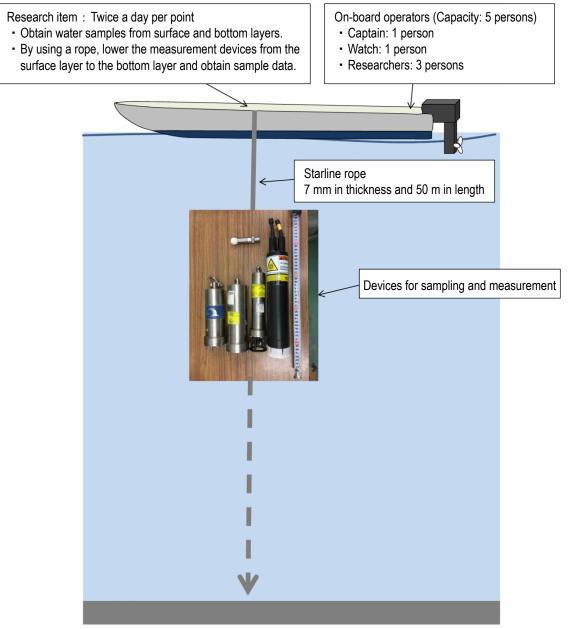


Figure 2: Water Sample CollectionWater Sample Collection Water Sample Collection Water Sample

Figure 2: Water Sampling

Research Stage	Date	Weather
1 st time	June 19, 2018	Clear
2 nd time	July 4, 2018	Cloudy
3 rd time	July 19, 2018	Clear
4 th time	August 1, 2018	Clear
5 th time	August 23, 2018	Partly cloudy
6 th time	August 28, 2018	Cloudy
7 th time	September 13, 2018	Cloudy
8 th time	September 26, 2018	Cloudy
9 th time	October 10, 2018	Light cloud and
		occasionally
		clear

Table 4: Research Schedule (June 2018 to early Oct)

(2) Research Results

The results for the average CO₂ partial pressure for all research at each point are indicated in Figure 4. In Kanazawa Bay, the water mass flowing in from Tokyo Bay during the rising tide passes through the primary production in the bay and flows out of the bay during the falling tide. Based on this, to understand the CO₂ absorption behavior after the primary production has occurred in Kanazawa Bay, the CO₂ partial pressure during the falling tide at each point was extracted and a graph created. The time of the falling tide as determined from the tide level data of the Yokosuka automatic tide-gauge station under the jurisdiction of the Japan Coast Guard.

The result for this period of research, which included June and July when the eelgrass is flourishing, among the 10 points in the Kanazawa region, was that there

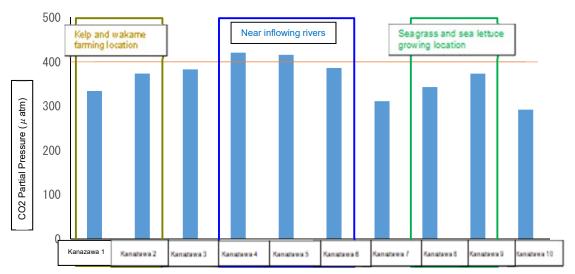


Figure 4: Average CO2 Partial Pressure for All Studies at Each Point

was a trend of CO_2 absorption at 8 points including the location where eelgrass is grown, while there was a trend of CO_2 emission at the 2 points within the location near the inflowing rivers. In addition, at the points within the location where kelp and wakame are cultivated, there was a trend of CO_2 absorption even outside the cultivation period.

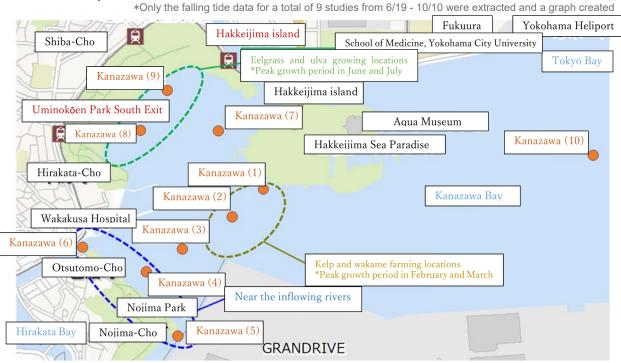


Figure 5: Research Points (Main Research)

② Seaweed Biomass Research

We researched the biomass of seaweeds in Kanazawa Bay.

The below provide an overview of the results for eelgrass.

Species	Distribution	Period	Location	Note
Eelgrass	Natural	June 2018	Uminokōen	
			Park	
Ulva	Natural	June 2018	Uminokōen	Conducted
			Park	simultaneously
				with research
				on eelgrass
Kelp	Artificial	From Oct. 2018	South of	
	(Cultivation)	to Mar. 2019	Hakkeijima	
			Island	
Wakame	Artificial	From Oct. 2018	South of	
	(Cultivation)	to Mar. 2019	Hakkeijima	
			Island	

Table 5: Overview of Seaweed Biomass Research

(1) Eelgrass Research

To measure the current volume of eelgrass in Uminokōen Park, we researched the dimension and wet weight per unit area of eelgrass in June, the month in which it grows densely, in a controlled area in Uminokōen Park. To ensure the accuracy of the research, we limited the research area within dense-growth area. An overview of the research is provided in the table below.

	Dimension research	Wet weight research
Time	Tuesday, June 26 th , 2018	Same
Location	Uminokōen Park	Same ^{*1}
Conductor	Agency responsible for maintenance and management of Uminokōen Park (Kanazawa Rinkai Service), City of Yokohama	City of Yokohama
Method	 Move to the outer rim of the dense-growth area of eelgrass and by using a simple GPS logger, record the location. Calculate the dimension from the line data for the outer rim. 	 At 15 locations*² in the dense- growth area of eelgrass, cut a tsubo (3.3 m²) of eelgrass.*³ (Locations are set at a set interval from the ground to the offshore.) Each cut sample is measured per location for wet weight, length, no. of rootstocks.

Table 6: Eelgrass Research Overview

*¹: To avoid an adverse effect on the eelgrass in the research area, eelgrass samples were cut within the area in which we had already cut eelgrass for boat routes.

*²: 6 locations in 2015, 15 locations in 2016, 15 locations in 2017.

*³: A 50 cm x 50 cm section of eelgrass was cut at each location within a quadrat.

1) Dimension Research

The following are the results of the research of the dimensions of dense-growth areas of eelgrass locations in Uminokōen Park. The dimensions (orange) of eelgrass locations this year fell greatly from the dimensions in past years (red, blue, green) (see Fig. 5).

2) Wet Weight Research

The following are the results of the research of the wet weight of dense-growth areas of eelgrass locations in Uminokōen Park.

The results of this year's study show that the wet weight and maximum length have fallen, but the number of rootstocks has increased since past years. The state in 2018

shows a higher number of rootstocks per unit dimension and a tendency for the maximum length to be lower than in past years. As the distribution area, it is assumed that because of a decline of the number of places where the water is deep and rootstocks tend to be large on the offshore side, there are now more small rootstocks in Uminokōen Park. It is assumed that the cause of this could be that in 2017, the year before the research year, typhoons approached three times (July 4, October 21, October 29), so that rough waves washed away eelgrass with long rootstocks or that high water temperature hampered its growth.



Figure 5 Results of research on eelgrass in Uminokōen Park (Dimensions, wet weight)

(2) Ulva

To measure the current volume of ulva in Uminokōen Park, we researched its wet weight. The following are an overview and results of the research, showing that even at the maximum, it is about 80 g/m² (see No. 9), which is far lower than that of eelgrass.

A tendency for the wet weight to be higher in deeper places (No. 8 to 15) than at shallow places (No. 1 to 7) is seen.

And even at the first experts round-table conference, Mr. Zama from Kanazawa Rinkai Service provided information showing that the quantity of Ulva that drifted ashore was about 20% of the quantity in a normal year, and that even offshore, it was extremely low this year.

	Wet weight research							
Time	Tuesday, June 26th, 2018							
Location	Uminokōen Park							
Conductor	City of Yokohama							
Method	Measurement at 15 locations,							
	same as eelgrass research.							
	 Sampling of all ulva in the 							
	quadrat covering the locations.							
	 Wet weight was measured per 							
location for each sample.								

Table7 : Overview of the research on ulva

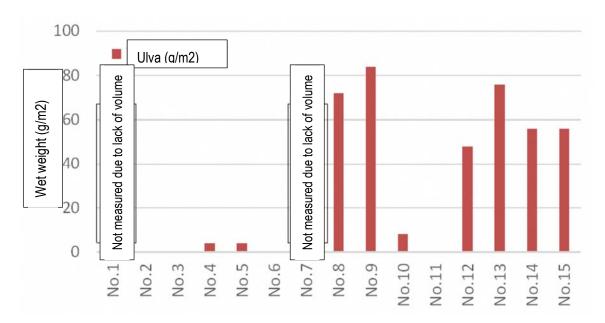


Figure6 : Wet weight of ulva per location in Uminokōen Park

(3) Kelp and Wakame

A biomass study was done in order to study carbon dynamics in sea areas including the large seaweed beds in Kanazawa Bay.

- 1) Study Procedure
- (a) In seaweed beds (kelp, wakame) cultivated in the study area and natural seaweed beds (Sargassum fulvellum), we tagged about 50 rootstocks in each bed at the first survey.

- (b) Among the cultivated seaweeds, tagged rootstocks were pulled up into a boat with ropes and the leaf length and leaf width of each rootstock, and rootstock density were measured during each study. After measurement, they were returned from the boat using ropes.
- (c) In the natural seaweed beds, during each study, the boat was moved to a place where the water is about waist deep, two researchers got out of the boat and measured the leaf length and leaf width of each rootstock and the rootstock density that had been tagged.
- (d) On the final research day, the tags on the seaweed were all recollected.
- 2) Research schedule table

	2019/ Jan				2019/ Feb								201	9/	Ma	r					
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat		Sun	Mon	Tue	Wed	Thu	Fri	Sat
		1	2	3	4	5						1	2							1	2
6	7	8	9	10	11	12	3	4	5	6	7	8	9		3	4	5	6	7	8	9
13	14	15	16	17	18	19	10	11	12	13	14	15	16		10	11	12	13	14	15	16
20	21	22	23	24	25	26	17	18	19	20	21	22	23		17	18	19	20	21	22	23
27	28	29	30	31			24	25	26	27	28				24	25	26	27	28	29	30
															31						
												:Res	earcł	n day	ay :Alternative of			date			

Table 8 Kelp and wakame research schedule tables

3 Amount of CO₂ Absorption / Reduction in Eelgrass Location

(1) Carbon Fixation Concept

The amount of part of the body that has died or flowed out from the location of the eelgrass in the coastal area, that is deposited on the seabed as organic matter, which is difficult to decompose is considered as the amount of CO₂ absorption/reduction (= Blue Carbon).

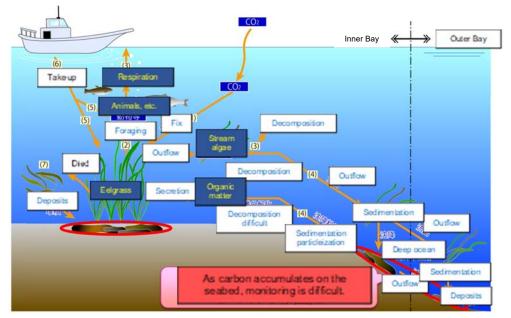


Figure 7: CO₂ Fixation Mechanism in Eelgrass Locations

(2) Calculation Method

Part of the carbon originating from the eelgrass accumulates on the seabed but monitoring the amount of accumulation on the seabed is difficult. Therefore, by multiplying the existing amount of eelgrass in the entire eelgrass location observed at the site by the carbon fixed coefficient set based on the value in the literature, the amount of CO₂ absorption / reduction from the eelgrass location was calculated.

Annual amount of CO2 absorption/reduction (kg-CO2/year)

- = the existing amount of eelgrass in the entire eelgrass location (kgWW) x (1-moisture content)
 - × amount of carbon content in the eelgrass (kg-C/kgDW) × carbon fixed coefficient (/year) × 44/12
- = (area(m²) x wet weight per unit area (kgWW/m²)) x (1-0.842) × 0.323 × 0.115 × 44/12

(3) Calculation Results of CO2 Absorption/Reduction Amount

When calculating the amount of CO_2 absorption/reduction, to improve the reliability as a basic unit via the accumulation of numbers of samples, the cumulative average value was used. In addition, in 2018, among all 15 quadrats, as only the ascending order from the shore to offshore was included in the dense-growth area, that figure was adopted. As a result, this year, the amount of CO_2 absorption / reduction fell compared to last year (see figure 8).

Figure 9: CO₂ Absorption/Reduction Trial Calculation Result (Eelgrass Location

					Resear	ch Result				
	ltem		Unit	2015 Dense- Growth Area	2016 Dense- Growth Area	2017 Dense- Growth Area	2018 Dense- Growth Area			
	Area		m2	51,289	80,037	82,448	19,641			
Wet weight per	year conc	erned	kgWW/m2	1.785	2.717	4.564	2.656			
unit area	usage va	alue	kgWW/m2				3.264			
Wet weight in ee	Igrass location dens	e-growth area	kgWW	167,396	261,224	269,093	64,103			
	P/B ratio 1)		kgWW				4			
Ma	isture content 2), 3)	-				0.842			
Ratio of ca	arbon content in eelę	grass 4)	kg-C/kgDW				0.323			
	Figure in literature in Japan	Total	/year	/year						
		Total	/year	0.212						
Fixed carbon coefficient	Figure in literature overseas	In seaweed bed	/year				0.163			
		DOC	/year		(
		POC	/year		0.02					
Carbor	dioxide conversion	ratio	-				3.667			
	Figure in literature in Japan 5)	Total	t-CO2/year	3.602	5.621	5.791	1.379			
Amount of CO2		Total	t-CO2/year	26.563	41.451	42.700	10.172			
fixation in the eelgrass location		In seaweed bed	t-CO2/year	20.423	31.871	32.831	7.821			
	overseas 6)	DOC	t-CO2/year	2.757	4.302	4.431	1.056			
		POC	t-CO2/year	3.383	5.279	5.438	1.295			

Regeneration/Maintenance)

1) Daisuke Muraoka, An Attempt to Determine Carbon Absorption at a Seaweed Area on the Sanriku Coast: Tohoku National Fisheries Research Institute News No. 65, 2-4, 2003.

2) Ministry of the Environment: The 7th Natural Environment Conservation Basic Survey Shallow Sea Ecosystem Survey (Seaweed bed Survey) Report, 2008.

3) Toyoki Kawabata, Kousou Kayata, Masahide Inui, Kazutsugu Hirayama: Estimation of Net Production of Eelgrass Zostera Matarina from Spring to Summer in Yanai Bay, Journal of the Japanese Society of Fisheries Science, 59 (3), 455-459, 1993.

4) Toshinobu Terawaki, Hitoshi Tamaki, Masaki Nishimura: Total Amount of Carbon and Nitrogen in Eelgrass in Hiroshima Bay, Bulletin of the National Fisheries Research Institute, No. 4, 25-32, 2002.

5) Report on the 2011 Project for Outsourcing Promotion Costs for Global Warming Countermeasures, "Assessment of Carbon Sinks in Seaweed Beds and Tidelands and Development of Technology for Improving Absorption Function" ((Germany) National Fisheries Research Institute, Atmosphere and Ocean Research Center at the University of Tokyo, Tohoku Region Biological Field Center at the Hokkaido University, 2012)

6) Export from Seagrass Meadows Contributes to Marine Carbon Sequestration (Carlos M. Duarte and Dorte Krause-Jensen, 2017)

(4) Research on Carbon Stocks in Sediments

In Uminokōen Park, the carbon stocks in sediments were measured in order to clarify the guantity of CO2 absorbed and the carbon fixation on the sea bed by Blue Carbon.

1) Concept of carbon stocks in sediments

Part of carbon absorbed or fixed as Blue Carbon is buried in the sediment through the death and sinking of living organisms. The quantity of atmospheric CO2 absorbed as carbon in sediments is calculated by measuring organic carbon (stocks).

2) Research method

The following is the field research method used to study carbon stocks in sediment. Samples (approximately 1 meter cores) were taken at three locations in Uminokōen Park (dense growth areas, sparse growth areas, and non-growth areas).

Field study	Description		
Period	Feb. 14, 2019, 9:00 to 15:00		
Place	In Uminokōen Park		
Equipment	7 acrylic pipes (including spares), simple GPS, several kinds of hammers, staff, diving		
prepared	gear		
Required	4 (1 diver, 2 workers, 1 safety person on dry land)		
manpower			
Description of research	 At the site, three locations—dense growth, sparse growth, and non-growth areas—were selected (simple GPS). At each selected location, the diver did underwater work, which was using the acrylic pipes to sample cores of about 1 m (minimum 90 cm). [Acrylic pipes: diameter 7.6 cm (internal diameter 7 cm, wall thickness 0.3 cm), length 1.5 m] The ends of the acrylic pipes used for sampling were closed with rubber stoppers, and to prevent disturbance of the samples, the pipes were inserted perpendicularly then immediately taken to the laboratory. 		

Table 10 Research on carbon stocks in sediments

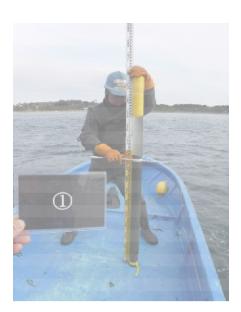


Figure 8 View of the research on carbon stocks in sediments

3 Conference on Urban Blue Carbon Report

(1) Overview of the experts round-table conference

The following is an overview of the experts round-table on urban Blue Carbon

Table 11 Participant affiliation table

Conference	Date and time	Place	Topics discussed
First	July 2 (Mon.), 2018	Yokohama Media	 Yokohama Blue Carbon Initiatives
	15:00 to 16: 00	and Communications	 Initiatives in FY2018
Second	Nov. 13 (Tues.), 2018	Center	• Others
	10:00 to 11:30		

Figure 9 View of the Round-Table Conference on Urban Blue Carbon (Left: 1st, Right: 2nd)

Table 12: Participant Affiliation

Participant affiliation				
National Research and Development Agency, National Institute of Maritime, Port				
and Aviation Technology Port and Airport Research Institute: PARI				
Tokyo University of Marine Science and Technology				
Yokohama National University				
National Research Institute of Fisheries Science, Japan Fisheries Research and				
Education Agency				
National Institute for Environmental Studies				
Ministry of the Environment Global Environment Bureau				
Ministry of Land, Infrastructure, Transport and Tourism. Kanto Regional				
Development Bureau				
Yokohama City Fisheries Cooperative Association				
Kanazawa Rinkai Service Co., Ltd.				
Yokohama Hakkeijima Co., Ltd.				
ICLEI Japan				
City of Yokohama, Environmental Planning Bureau				
City of Yokohama, Port and Harbor Bureau				

City of Yokohama, Climate Change Policy Headquarters <Secretariat>

(2) Opinions at Round-Table Conference

The activities at the first round-table conference were mainly the introduction of initiatives and exchange of information. At the second round-table conference, interim information on the results of the field research was reported, and the participants gave their opinions on the conduct of the research, summarization policies, and information announcement method. Table 13 shows noted points and corresponding policies.

Item	Noted Points	Corresponding Policy
	For research points (5) and (6), it is better to extract only	To understand the effects of inflowing rivers, the noted
	at the period of low salinity.	points will be considered in the future.
	It is difficult to examine water quality data that does not	To understand the CO_2 absorption from water sampling
	include information about tides. As with the water	twice a day, only data at the time of a falling tide is used
	sampling time, this is important information so it should	(see Figure 5).
	be combined and arranged with other information and	
	then consideration given.	
Data	Since the timing and amount of rainfall in the catchment	In addition to the AMeDAS Observatories, rainfall data
	basin are important, data from not only one AMeDAS	from Kanazawa Fire Department will be used.
Organi- zation	Observatory location, but from several locations should be used.	
	For management of urban sea areas, it is necessary to	The noted points will be organized and then considered.
	arrange the location of discharge pipes for sewers and	
	the extent of maintenance of the combined flow system	
	and separated flow system.	
	If research targets are expanded in the future, setting	We will provide data to the Port and Airport Research
	the control zone is important. (If data are collected	Institute with whom we are cooperating, and we will
	offshore as much as possible at the time of high tide,	consider how to evaluate CO_2 absorption going forward.
	they can be used as data with little ecological impact)	
	Since the water in the sea area is flowing, even if the	
	partial pressure is low at a particular point, it is not	
Conside-	known where it is being absorbed.	
rations	To verify what impacts CO ₂ absorption through a survey	
	of seawater CO_2 concentration, it may be necessary to	
	further organize related information. As an administrative authority, only Yokohama City is	We will cooperate with stakeholders concerned with the
Other	engaged in research on Blue Carbon, so establishing a	sea and disseminate information. Urban blue carbon will
	survey method for measuring seawater CO ₂	be factored into the urban GHG inventory such as CDP
	concentration in such a way that it can be utilized by	and GPC in the future, and we aim to incorporate GHG
	other local governments, and to disseminate it	reduction via urban blue carbon into urban
	internationally is very important.	administrative policies.
	As all local government budgets are tight, it is important	
	to show how to provide incentives to the private sector	
	and the local area.	

Figure 13: 2nd Round-Table Conference on Urban Blue Carbon - points to be noted

4. Future prospects

In Yokohama City, in order to accumulate data concerning quantity of CO2 absorbed and fixed on the sea bed by "Blue Carbon focused on urban characteristics" and to verify a method of numerically expressing these data as quantity of urban CO2 reduction in order to build a Yokohama Model, the city has, in cooperation with research organizations, conducted field water quality research to clarify the behavior of CO2 absorption in urban sea areas at eelgrass locations and at kelp and wakame cultivation beds in Kanazawa Bay. The results have shown a general tendency for CO2 to be absorbed in Kanazawa Bay.

Furthermore, carbon stocks in sediments were researched in order to clarify carbon fixation in the bottom under eelgrass locations, and the materials obtained have been provided to the Port and Airport Research Institute. The Port and Airport Research Institute is expected to continue this research on water quality conducted for this project after October 2018, to measure quantities of alga body migrating out of seaweed cultivation locations and natural seaweed beds in Kanazawa Bay, study carbon fixation in seaweed cultivation locations, study the distribution of natural seaweed locations, and to apply the results of these studies and this project to verify the water quality simulation model in the coming year.

This water quality simulation is now in the first year of a three-year planned project, and later after the physical field has been reproduced, an ecosystem model will be solved. At the stage when verification of the model has been completed, predictive calculations will be done for a case where the seaweed beds have been increased and for a case where the quantity of inflowing N and P have been controlled, and the anticipated degree of CO2 fixing effect which these measures cause will be predicted and evaluated. It is assumed that at this stage it will be possible to also study measures such as providing an ocean environment where the CO2 absorption capacity is higher based on urban characteristics.

In the next fiscal year, the quantity of CO2 absorbed and fixed by the growth of seaweeds (cultivated kelp and wakame) will be calculated, the offset credit that will be their object under the Yokohama Blue Carbon Offset System that is now being promoted will be verified and published, and support will be given to initiatives to improve the ocean environment using the profits of the sale of credits.

The experts round-table conference will report initiatives that have been taken under the Yokohama Blue Carbon Project to experts and other concerned persons in order to continue the project, exchange views concerning progress of the project beginning next year, and at the third experts round-table conference scheduled for June 2019, reports on overviews of various research conducted since the second conference will be given along with reports on the progress of the simulation.

The following figure is an image of future progress which is now at phase 1. In the future, the Yokohama Model will be built, and in order for it to have ripple effects on developments and policies of other cities, the research and studies will advance to Phase 2.

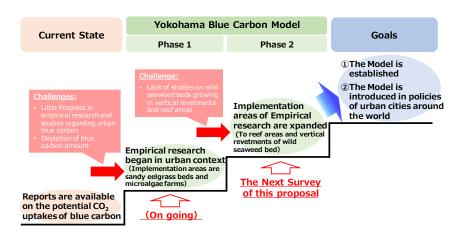


Figure 10 Future Prospects